A neural network controller for hydronic heating systems of solar buildings
نویسندگان
چکیده
An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of about 15% under North European weather conditions.
منابع مشابه
Development of a neural network heating controller for solar buildings
Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings wh...
متن کاملQuasi-adaptive fuzzy heating control of solar buildings
Significant progress has been made on maximising passive solar heat gains to building spaces in winter. Control of the space heating in these applications is complicated due to the lagging influence of the useful solar heat gain coupled with the wide range of construction materials and heating system choices. Additionally, and in common with most building control applications, there is a need t...
متن کاملHeat pipe-based radiator for low grade geothermal energy conversion in domestic space heating
A severe technical drawback of geothermal heat pumps (GHPs) is the fact that the nominal operating temperature available for domestic space heating is typically in the region of 50°C. This is 25°C to 40°C less than conventional boiler settings used in hydronic central heating applications. As a result, GHPs are not generally ideal for direct replacement of conventional hydronic central heating ...
متن کاملEnergy Consumption and Heat Storage in a Solar Greenhouse: Artificial Neural Network Method
In this study, the performance of a solar greenhouse heating system equipped with a linear parabolic concentrator and a dual-purpose flat plate solar collector was investigated using the Artificial Neural Network (ANN) method. The heat required for the greenhouse at night hours was supplied by the heat stored in the storage tank by the solar system during the sunshine time and an auxiliary he...
متن کاملNeural Controller Design for Suspension Systems
The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2004